8th International Conference of Multidisciplinary Approaches (iCMA), 2021 Faculty of Graduate Studies, University of Sri Jayewardenepura, Sri Lanka.

ISSN: 2386 – 1509 Copyright © iCMA

Page - 10

SYNTHESIS AND CHARACTERIZATION OF BARE, Ag-DOPED, AND Gd-DOPED TiO₂ NANOPARTICLES FOR THE PHOTO-DEGRADATION OF METHYLENE BLUE DYE

De Silva S.M.¹, Adassooriya N.², Vithanage M.³ and Walpita J.K.^{1,3*}

¹Instrument Centre, Faculty of Applied Sciences,
University of Sri Jayewardenepura

²Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya

³Ecosphere Resilience Research Centre, Faculty of Applied Sciences,
University of Sri Jayewardenepura

jkwalpita@sjp.ac.lk

Abstract

TiO₂ nanoparticles (NPs) doped with different Ag and Gd contents were prepared by a modified solgel method using, titanium tetraisopropoxide (TTIP), silver nitrate (AgNO₃) and gadolinium oxide (Gd₂O₃) as precursors and 2-propanol as the solvent. In this study, bare, 1% and 2% Ag-doped and Gddoped TiO₂ NPs were synthesized and the effects of Ag and Gd doping on the crystallization, Ti-O-Ti metal bonding, particle size and photocatalytic activity were analyzed using PXRD, FT-IR spectroscopy, particle size analyzer and UV-Visible spectroscopy respectively. The XRD investigations of all these TiO₂ NPs confirmed the tetragonal form of anatase phase of TiO₃. FT-IR spectra showed the TiO₂ peaks in the characteristic region of Ti-O-Ti metal bond at the wavenumber between 450 and 900 cm¹. Average particle size of synthesized TiO₂ NPs was varied according to the type and the amount of dopant added. Average particle size of bare TiO₂, 1% and 2% Ag-doped TiO₂ and 1% and 2% Gd-doped TiO, were 68.1 nm, 189.5 nm, and 314 nm respectively. Gd-doped TiO, NPs have shown the highest particle size compared to bare and Ag-doped TiO₂. Photocatalytic activity was measured using the cationic dye, methylene blue (MB) which commonly used as a dye and as a medication and, injection of MB cause different side effects including dizziness, nausea, headache etc. Here, 2% Gd-doped TiO₂ has shown the highest colour degradation efficiency under 2-hour UV irradiation at the wavelength of 365 nm. According to the photo degradation efficiency of methylene blue dye, bare TiO₂ NPs only showed 78.3 % while 2% Ag-doped and 2% Gd-doped TiO₂ NPs have shown 90.3 % and 95.1 % photo degradation efficiency respectively. Therefore, it can be concluded that doping with, noble metal ions and lanthanide metal ions can enhance the photo degradation efficiency of methylene blue and when increasing the doping concentration, dye degradation rate too increased.

Keywords: *Metal ion doping, Ag-doped TiO₂ NPs, Gd-doped TiO₂ NPs, Methylene blue dye, Photocatalytic activity*