7th International Conference of Multidisciplinary Approaches (iCMA), 2020 Faculty of Graduate Studies, University of Sri Jayewardenepura, Sri Lanka.

ISSN: 2386 – 1509 Copyright © iCMA

Page - 10

A NUMERICAL SIMULATION STUDY OF THE PERFORMANCES OF 3D/2D PEROVSKITE SOLAR CELL AFTER INTRODUCING THE DEFECTS IN THE 3D PEROVSKITE LAYER

Adihetty N.L.¹, Ratnasinghe D.R.¹, Attygalle M.L.C.^{2*}, Narayan N.S.³ and Jha P.K.³

¹Faculty of Graduate Studies, University of Sri Jayewardenepura, Sri Lanka

²Department of Physics, Faculty of Applied Sciences,

University of Sri Jayewardenepura, Sri Lanka

³Department of Physics, Faculty of Science,

The Maharaja Sayajirao University of Baroda, Gujarat, India

lattygalle@sci.sjp.ac.lk

Abstract

This is a numerical simulation study of a thin film hybrid organic-inorganic perovskite solar cell with a p-i-n structure. The p-type semiconductor layer is an organic hole transporting material (HTM) called Poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). In this new device structure, we have intentionally included a double intrinsic layer (i) of 3D Methylammonium Lead Iodide (CH₃NH₃PbI₃) (MAPI) and the 2D monolayer of CH₃NH₃PbI₃ to minimize the degradation of the device, and also embedded deep and shallow defects in the 3D-MAPI layer. The n-type material, fullerene derivative (6,6)-phenyl-C61-butyric acid methyl ester (PCBM) is used as an organic electron transporting material (ETM). The solar cell performance has changed after including defects in the 3D-MAPI since the defects can alter the dark saturation current of the device. The simulation results show that the shallow defects and deep defects of 3D-MAPI can alter the open-circuit voltage of the perovskite solar cell model. The open-circuit voltage of the solar cell model depends on the dark saturation current, which indicates how much recombination is occurring in a semiconductor. The deep defects of 3D-MAPI should be minimized to increase the cell performance since the high dark saturation current decreases the open-circuit voltage of the solar cell. We have observed that Shockley-Read-Hall recombination is the most predominant recombination mechanism for the deep defects in the 3D-MAPI materials.

Keywords: perovskite-based solar cell, recombination, thin-films, dark saturation current, defects