PATHOGEN INHIBITION EFFICIENCY OF FUNGICIDES ON 
Corrynesporacassica isolaTE FROM TRADITIONAL AND NON – 
TRADITIONAL RUBBER GROWING AREAS

Wijesingha Y.L.1*, Fernando T.H.P.S.2 and Fernando K.M.E.P.1
1 Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Lanka
2 Rubber Research Institute, Sri Lanka
yashodawijesingha92@gmail.com

Natural rubber, Hevea brasiliensis, is one of the major economically important estate crops. It is the third largest export income in Sri Lanka. Rubber cultivations were first established in the wet zone of the country and the cultivated areas are known as traditional rubber growing areas. Recently, rubber cultivations have been expanded to the dry zone of the country and the cultivated areas are known as non – traditional rubber growing areas. Corynespora cassiicola is the most destructive foliar pathogen of the rubber plant and causes Corynespora Leaf Fall Disease (CLFD) of rubber. This disease has been the cause for a major economic loss in the rubber industry. Characteristic symptom of CLFD is ‘railway – track like’ lesions. This study was carried out to identify the difference in the efficiency of two different fungicides; mancozeb and carbendazim, on Corynespora cassiicola isolates from traditional and non – traditional rubber growing areas. Poison food technique was used to assess the pathogen inhibition efficiency of fungicides. Potato Dextrose Agar (PDA) plates with different fungicide concentrations (for mancozeb; 50, 100, 200, 400, 800, 1000 and 1600 ppm and for carbendazim; 2, 3 and 4 ppm) were used to observe the pathogen inhibition efficiency. Carbendazim showed drastically low inhibition concentration, 4 ppm, compared to mancozeb, 8 ppm. Pathogen inhibition efficiency of both fungicides did not show a statistically significant difference (P<0.05) between pathogen isolates from the two geographical regions.

Keywords: Hevea brasiliensis, Corynespora cassiicola, CLFD (Corynespora Leaf Fall Disease), traditional and non – traditional rubber growing areas